An investigation on the determination of pomological and morphological traits of wild almond grown at Sanliurfa province

Ak B.E., Açar I., Sakar E.

in

Ak B.E. (ed.). XI GREMPA Seminar on Pistachios and Almonds

Zaragoza: CIHEAM

Cahiers Options Méditerranéennes; n. 56

2001

pages 139-144

Article available online / Article disponible en ligne à l’adresse:

http://om.ciheam.org/article.php?IDPDF=1600167

To cite this article / Pour citer cet article

http://www.ciheam.org/

http://om.ciheam.org/
An investigation on the determination of pomological and morphological traits of wild almond grown at anlıurfa province

B.E. Ak*, I. Acar**, and E. Sakar*
*Department of Horticulture, Faculty of Agriculture, University of Harran, 63040 anlıurfa, Turkey
**Pistachio Research Institute, P.O. Box 32, 27001 Gaziantep, Turkey

SUMMARY – There are two types of wild almonds grown naturally or edge plant of pistachio orchards in the southeastern Anatolia Region; they are Amygdalus orientalis (A. argentea) and Amygdalus turcomanica. The leaves of Amygdalus orientalis are hairy, gray in colour and large. It blooms earlier than Amygdalus turcomanica. The shoots are hairy. The plant is semi-dwarf. Fruit taste of this genus is bitter. The leaves of Amygdalus turcomanica are hairless, green in colour and smaller than Amygdalus orientalis. It has late blooming characteristics. The shoots are hairless and thorny. The plants are very dwarf. The morphological and pomological traits of these two genus are discussed in this paper.

Key words: Fruit traits, Amygdalus orientalis, Amygdalus turcomanica.

RESUME – "Recherches pour la détermination des caractères pomologiques et morphologiques d'amandiers sauvages cultivés dans la province de anlıurfa". Il existe deux types d'amandiers qui poussent naturellement ou se trouvent en lisière des vergers de pistachiers dans le sud-est de la région d'Anatolie. Il s'agit d'Amygdalus orientalis (A. argentea) et Amygdalus turcomanica. Les feuilles d'Amygdalus orientalis sont villeuses, grandes et de couleur grise. Il fleurit plus tôt qu'Amygdalus turcomanica. Les pousses sont villeuses. La plante est semi-naine. Le goût du fruit de ce genre est amer. Les feuilles d'Amygdalus turcomanica sont glabres, de couleur verte et plus petites que celles d'Amygdalus orientalis. Il présente des caractéristiques de floraison tardive. Les pousses sont glabres et épineuses. Les plantes sont très naines. Les caractères morphologiques et pomologiques de ces deux genres sont discutés dans cet article.

Mots-clés : Caractères du fruit, Amygdalus orientalis, Amygdalus turcomanica.

Introduction

The origin of almond is central and west Asia. It is scattered and settled down toward east to China and India, and toward west to north Iran, Syria and Mediterranean countries. However, dwarf bitter almond (Amygdalus nana) has settled down with wide variations in Anatolia. Therefore, Turkey can also be accepted as origin of almond. Dwarf bitter almond can be seen as a characteristic fruit species among the bushes which have covered arid and bared hills of Anatolia (Özbek, 1978).

Dwarf bitter almonds (Amygdalus nana) are thorny bushes. The fruits are very small, hard and have thick shell. They are quite resistant to drought. Therefore, the trees which are well compatible with almond cultivars as dwarf rootstock can be selected among this species and they can be used in almond production (Özbek, 1978).

The wild almond, Amygdalus (Prunus) webbii, can be used as rootstock for almond, nectarine and peach (Alberghina, 1978), for cultivated almond (Dimitrovski and Ristevski, 1973a,b).

According to Dimitrovski and Ristevski (1973b), wild almond [Amygdalus (Prunus) webbii] is dwarf rootstock for cultivated almond. They report that, seedlings of Amygdalus (Prunus) webbii made 30-50% less growth than those of Prunus communis and almond cvs grafted on P. webbii showed a similar reduction in vigour.

Almond is growing at the marginal areas, poor, rocky and stony, and calcareous soils in Turkey. Because of hard resistance of drought conditions, almond trees have been used in afforestation of rainfed areas (KaKa et al., 1999).
There are different sections related wild almond species. Kester et al. (1990) reported that, related wild species have been classified into five taxonomic sections (Grasselly, 1976; Denisov, 1988).

(i) *Eumygdalus* Spach Section: this section contains the ancestral species of the modern cultivated almond. These species are:

- *Prunus bucharica* Korschinsky.
- *P. communis* (L.) Archang.
- *P. fenzliana* Fritsch.
- *P. curamica* Korschinsky.
- *P. orientalis* (Mill), [= *P. argentea* (Lam) Redh. = *P. kotschyi* (Boissier and Hohen) Nab. = *P. korchinskii* Hand-Mazz.] appear to be the same or closely related species that occur in the mountains of Iraq, Syria and western Iran extending into Turkey.
- *P. webbii* (Spach) Vieh.
- *P. zabelica* Serafimov.

(ii) *Spartioides* Spach Section: this section represents a complex of a number of species of similar morphology which are adapted to the extreme xerophytic conditions found on steppe and low desert areas. Species of this section:

- *P. sportioides* Spach.
- *P. arabica* Olivier.
- *P. glauca*.

(iii) *Lycioides* Spach Section: this section represents another large group of variable plants extending across a wide area from northeastern Iraq, through Iran, Afghanistan, southern Armenia and into southern Tajikistan. Typical species in this section:

- *P. brahuica* Bossier.
- *P. eburnea* Spach.
- *P. erioclada* Borhm.
- *P. horrida* Spach.
- *P. lycioides* Spach.

(iv) *Chameamygdalus* Spach Section: the type species is *P. nana* Stock (*P. tenella* Batsch).

(v) *Leptopus* Spach Section: *Prunus pedunculata* Pall and *P. mongolica* Maxim ex. are type species of this section.

In this study, we aimed to determine pomological and morphological characteristics of three different types of *Amygdalus orientalis* and one type of *Amygdalus turcomanica* wild almond species which are grown around _anlıurfa_ province. They are compared with *Amygdalus webbii* fruits.

There are a lot of trees and types of *A. orientalis* around the _anlıurfa_ province, and they are using as edge and border plants around the pistachio orchards and vineyards. In this region, the number of *A. turcomanica* is less. We can only find a few bushes at different places.

(i) *Amygdalus orientalis* (Figs 1 and 2): it has early flowering stage. It is flowering before the *Prunus communis* types and the other almond cultivars. The trees and leaves are larger than *A. turcomanica*’s. The leaves are hairy and gray coloured and similar to *elaeagnus* (*Elaeagnus orientalis*). Fruit yield is very good and the nuts are light brown. Fruits have been eaten as green almond in spring. Taste of fruits is light bitter.

(ii) *Amygdalus turcomanica* (Figs 3 and 4): it has late flowering. The flowering of this species coincided to end of flowering period of *Amygdalus orientalis*. The trees are dwarf, the branches are quite thorny. The leaves are narrow, tall and hairless, and green coloured. Fruit yield is unsatisfactory and the nuts are dark brown. Because of very bitter taste, the fruits can not be eaten.
Material and method

In this study, we used three types of Amygdalus orientalis and one type of Amygdalus turcomanica fruits which are collected around _anlıurfa. However, A. webbii fruits were used for comparison with these types fruits.

The evaluation and scoring for each characteristic based on the Descriptor List for Almond (IBPGR) is included in Table 1 (Gülcen et al., 1990).
Table 1. Evaluation and scoring for each characteristic

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ease of hulling</td>
<td>Low, Intermediate, High</td>
</tr>
<tr>
<td>2. Ease of harvesting</td>
<td>Low, Intermediate, High</td>
</tr>
<tr>
<td>3. Nut size</td>
<td>3 Small, 5 Medium, 7 Large, 9 Extremely large</td>
</tr>
<tr>
<td>4. Nut shape</td>
<td>1 Round, 2 Oval, 3 Oblong, 4 Cordate, 5 Extremely narrow</td>
</tr>
<tr>
<td>5. Shell color intensity</td>
<td>1 Extremely light, 3 Light, 5 Intermediate, 7 Dark, 9 Extremely dark</td>
</tr>
<tr>
<td>6. Marking of outer shell</td>
<td>0 Without pores, 3 Sparsely pored, 5 Intermediate, 7 Densely pored, 9 Scribed</td>
</tr>
<tr>
<td>7. Softness of shell</td>
<td>1 Extremely hard, 3 Hard, 5 Intermediate, 7 Soft, 9 Paper</td>
</tr>
<tr>
<td>8. Kernel color intensity</td>
<td>1 Extremely light, 3 Light, 5 Intermediate, 7 Dark, 9 Extremely dark</td>
</tr>
<tr>
<td>9. Shrivelling of kernel</td>
<td>3 Slightly wrinkled, 5 Intermediate, 7 Wrinkled</td>
</tr>
<tr>
<td>10. Kernel pubescence</td>
<td>3 Low, 5 Intermediate, 7 High, 9 Extremely high</td>
</tr>
<tr>
<td>11. Kernel taste</td>
<td>3 Sweet, 5 Intermediate, 7 Bitter</td>
</tr>
<tr>
<td>12. Percentage of double kernel</td>
<td>The percentage of double kernels in a sample of 100 nuts</td>
</tr>
</tbody>
</table>
Results and discussion

Selected important nut characteristics have been studied in the study. Obtained data has been given separately for each wild almond types in Tables 2, 3 and 4.

Table 2. Some nut characteristics of different wild almond types

<table>
<thead>
<tr>
<th>Types</th>
<th>Ease of hulling</th>
<th>Ease of harvesting</th>
<th>Nut shape</th>
<th>Shell colour intensity</th>
<th>Marking of outer shell</th>
<th>Softness of shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 AO 01</td>
<td>Low</td>
<td>Intermediate</td>
<td>Extremely narrow</td>
<td>Intermediate</td>
<td>Without pores</td>
<td>Hard</td>
</tr>
<tr>
<td>63 AO 02</td>
<td>High</td>
<td>Low</td>
<td>Cordate</td>
<td>Intermediate</td>
<td>Without pores</td>
<td>Intermediate</td>
</tr>
<tr>
<td>63 AO 03</td>
<td>High</td>
<td>Intermediate</td>
<td>Oblong</td>
<td>Dark</td>
<td>Without pores</td>
<td>Intermediate</td>
</tr>
<tr>
<td>63 AT 01</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Ovate</td>
<td>Light</td>
<td>Sparsely pored</td>
<td>Extremely hard</td>
</tr>
<tr>
<td>A. webbii</td>
<td>–</td>
<td>–</td>
<td>Ovate</td>
<td>Light</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 3. Some physical characteristics of different wild almond types

<table>
<thead>
<tr>
<th>Types</th>
<th>Nut Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length (mm) Width (mm) Thickness (mm) Weight (g)</td>
</tr>
<tr>
<td>63 AO 01</td>
<td>14.31 c 8.07 d 1.17 d 0.40 d</td>
</tr>
<tr>
<td>63 AO 02</td>
<td>17.11 b 9.49 c 8.75 b 0.62 b</td>
</tr>
<tr>
<td>63 AO 03</td>
<td>14.58 c 9.57 c 8.31 c 0.53 c</td>
</tr>
<tr>
<td>63 AT 01</td>
<td>14.68 c 10.82 b 8.24 c 0.52 c</td>
</tr>
<tr>
<td>A. webbii</td>
<td>19.16 a 14.17 a 9.47 a 1.27 a</td>
</tr>
<tr>
<td>LSD%5</td>
<td>0.53 0.48 0.29 0.06</td>
</tr>
</tbody>
</table>

Table 4. Some kernel characteristics of different wild almond types

<table>
<thead>
<tr>
<th>Types</th>
<th>Kernel colour intensity</th>
<th>Shrivelling of kernel</th>
<th>Kernel pubescence</th>
<th>Kernel taste</th>
<th>Double kernel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 AO 01</td>
<td>Dark</td>
<td>Slightly wrinkled</td>
<td>Extremely high</td>
<td>Bitter</td>
<td>17.14</td>
</tr>
<tr>
<td>63 AO 02</td>
<td>Dark</td>
<td>Slightly wrinkled</td>
<td>High</td>
<td>Bitter</td>
<td>0.00</td>
</tr>
<tr>
<td>63 AO 03</td>
<td>Extremely dark</td>
<td>Intermediate</td>
<td>Extremely high</td>
<td>Bitter</td>
<td>0.00</td>
</tr>
<tr>
<td>63 AT 01</td>
<td>Intermediate</td>
<td>Wrinkled</td>
<td>Low</td>
<td>Extremely bitter</td>
<td>0.00</td>
</tr>
<tr>
<td>A. webbii</td>
<td>Light</td>
<td>Slightly Wrinkled</td>
<td>Low</td>
<td>Extremely Bitter</td>
<td>4.55</td>
</tr>
</tbody>
</table>

(i) Nut characteristics (Table 2).

- Ease of hulling: ease of hulling is an important characteristic for almonds. In these types, ease of hulling changed from low to high.
- Ease of harvesting: generally intermediate except for 63 AO 02.
- Nut size: nut size is also an important characteristic for almonds. According to obtained data, A. webbii has the largest nut and kernel size, and in weight; and 63 AO 01 has the smallest nut and kernel size, and in weight. The others have been measured between these two species (Table 3).
- Nut shape: nut shapes have differed between 3 types of A. orientalis. In A. turcomanica and A. webbii, the nut shape is ovate.

143
- Shell colour intensity: shell colour of 2 types of *A. orientalis* is intermediate and 1 type is dark. But the colour of *A. turcomanica* is extremely dark while *A. webbii* is light.
- Marking of outer shell: all types except *A. webbii* are without pores.
- Softness of shell: the types consisted of generally intermediate hard shell types. Softness of shell is hard and extremely hard in 63 AO 01 and *A. webbii*, respectively.

(ii) Kernel characteristics (Table 4).

- Kernel colour intensity: most of types in the populations have dark kernel colour. *A. webbii* is light.
- Shrivelling of kernel: most of the types have slightly wrinkled kernels.
- Kernel pubescence: in respect to kernel pubescence, types of *A. orientalis* are high and extremely high, while *A. turcomanica* and *A. webbii* are low.
- Kernel taste: all types of *A. orientalis* have bitter kernel taste. *A. turcomanica* and *A. webbii* are extremely bitter.
- Percentage of double kernel: the percentage of doubles ranged between 0 to 17.14% in the types. In two types of *A. orientalis* and in *A. turcomanica*, this value is 0%. As already known, low double kernel percentage is very important in almond breeding.

These species may be important for almond, peach, plum and apricot trees as rootstock in dry areas, because of resistance to drought conditions. According to our watches, trees of these types may also be resistant to *Capnodis* sp. It should be determined by entomologists in this point.

References

