Feeding behaviour, intake and digestion of the Camelus dromedarius at pasture

Kamoun M., Steinmetz P.

in

Tisserand J.-L. (ed.).
Elevage et alimentation du dromadaire

Zaragoza : CIHEAM
Options Méditerranéennes : Série B. Etudes et Recherches; n. 13

1995
pages 51-57

Article available online / Article disponible en ligne à l'adresse :

http://om.ciheam.org/article.php?IDPDF=95605341

To cite this article / Pour citer cet article

http://www.ciheam.org/
http://om.ciheam.org/
Feeding behaviour, intake and digestion of the *Camelus dromedarius* at pasture

M. KAMOUN
ECOLE SUPERIEURE
D'AGRICULTURE
MATEUR
TUNISIA

P. STEINMETZ
INSTITUT D'ELEVAGE
ET DE MEDECINE VETERINAIRE
DES PAYS TROPICAUX
FRANCE

SUMMARY - This study aims at gathering information on voluntary intake, degradability, nutritive value, feeding value and selection of plants in the dromedary. Dromedaries avoid grazing during hot hours. They select plants rich in protein and consume 1 kg of dry matter per 100 kg of live weight, producing 6.4 ± 1.3 kg of faeces with 56.7% humidity. Mean apparent digestibility of organic matter is $41.3 \pm 12.5%$.

Key words: Dromedary, feeding behaviour, nutritive value of pasture.

RESUME - "Comportement alimentaire, consommation et digestion du Camelus dromedarius au pâturage". Cette étude vise à recueillir des informations sur l'ingestion volontaire, la sélection des plantes, leur dégradabilité et leur valeur nutritive et la valeur alimentaire chez le dromadaire. Le dromadaire évite de pâturer pendant les heures chaudes de la journée. Il sélectionne les plantes riches en protéines et consomme 1 kg de matière sèche pour 100 kg de poids vif, produisant 6.4 ± 1.3 kg de fèces avec 56.7% d'humidité. La digestibilité apparente moyenne de la matière organique est de $41.3 \pm 12.5%$.

Mots-clés : Dromadaire, comportement alimentaire, valeur nutritive du parcours.

Introduction

Camel's food behaviour on pasture is not well known. Two pilot studies were undertaken at the ESA Mateur experimental farm in order to observe nutritional behaviour and rhythm activities of camel. This research is meant to verify the camel's diet selection, and the nutritive value and digestibility of its intake during the dry season (June-September), in order to estimate the supplement requirements to meet different physiological needs.

The first study concerned the female camel "Negga" behaviour (Kamoun and Levrel, 1991) and the second was about young male camel "Gueoud" behaviour. The synthesis of the last study is quoted below.
Methodology

The observations were made on different rangelands of the farm (17 hectares) during the dry season. The vegetation is typically Mediterranean. The studies were carried out on six male camels (Table 1).

Table 1. Body weight (BW)

<table>
<thead>
<tr>
<th>Birth date</th>
<th>Gueoud no.</th>
<th>BW at 01/08/91</th>
<th>BW at 31/08/91</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/09/89</td>
<td>8906</td>
<td>442</td>
<td>417</td>
</tr>
<tr>
<td>05/04/89</td>
<td>8902</td>
<td>440</td>
<td>442</td>
</tr>
<tr>
<td>11/03/89</td>
<td>8901</td>
<td>431</td>
<td>433</td>
</tr>
<tr>
<td>02/02/88</td>
<td>8803</td>
<td>513</td>
<td>507</td>
</tr>
<tr>
<td>27/01/88</td>
<td>8802</td>
<td>508</td>
<td>502</td>
</tr>
<tr>
<td>22/12/87</td>
<td>8801</td>
<td>445</td>
<td>415</td>
</tr>
</tbody>
</table>

The animals under study were herded together with other camels and they were watered at the end of the day. During a 2 week-period adaptation, the camels received 2 kg of food concentrate at 06:00 h, they arrive on pasture at 06:30 h and went back voluntarily around 17:30 h. At the same time, they became accustomed to the presence of observers and bags. Afterwards, we stopped concentrate distribution. In this experimental period, they arrived on pasture at 06:50 h and left it voluntarily around 17:00 h. Faeces were collected on camels deprived of concentrate for 7 days.

We determined:

i. The plant composition, the nutritive value and the productivity of rangeland during the dry season.

ii. Chronometric measurement of time spent by each animal (with or without concentrate distribution) in: consuming vegetation at ground level; consuming big tree vegetation; moving from place to place; ruminating and resting.

iii. Dry matter intake (composition, quantity and quality). To determine ingestion speed, dry matter composition and quality on natural pasture, we used the owner collection technique (Guerin, 1984). Then, at the highest grazing period, in close proximity to the animal, we imitated his feed intake patterns 10 minutes per hour per animal. Plant species and plant parts consumed by the camel were collected in bags, respecting bite numbers and bite size. The collection was weighed and analyzed.

iv. Apparent digestibilities. During 6 days, faeces were collected in bags attached
to the animals with harnesses. Faeces were collected 3 times a day. Collections were weighed and chemically analyzed.

Results

The productivity of rangeland at dry season was 5180 kg DM ha\(^{-1}\). The plant specie composition was: 25% tree (80% *Acacia*, 20% *Olea*); 75% annual grasses (70% *Gramineae*, 25% *Compositae*).

Camels graze during the morning and late afternoon. They avoid grazing during the hot time from 10:00 to 14:00 h (Fig. 1) and they spend 66.3% of their time grazing (Fig. 2a). The grazing time was influenced by age (Fig. 2b) and concentrate supplementation (Fig. 2c).

![Fig. 1. Behaviour of camels at pasture. (a) Camels receiving food concentrate. (b) Camels deprived of food concentrate.](image-url)
a: The group means

![Pie chart showing the distribution of time spent on different activities.]

- Moving: 0.42%
- Resting: 39.58%
- Tree pasture: 20.70%
- Herbaceous pasture: 42.40%

b: Influence of age

![Bar chart showing the time spent on different activities for 26 and 42-month-old groups.]

- Resting
- Moving
- Tree pasture
- Herbaceous pasture

- 26 month
- 42 month

% of time spent on pasture

0 10 20 30 40 50

c: Influence of food concentrate

![Bar chart showing the time spent on different activities for different levels of food concentrate.]

- Resting
- Moving
- Tree pasture
- Herbaceous pasture

- 0 Kg
- 2 Kg

% of time spent on pasture

0 10 20 30 40 50

Fig. 2. Time spent on different activities (expressed as % of total pasture time).
Dietary contributions of plant species and groups of species are reported in Fig. 3. Camels are able to select plant species with a high crude protein content.

(a) Expressed as % of total plant species

(b) Expressed as % of total Dry Matter

Chemical component

Fig. 3. Characteristics of the diet. (a) Plant species selected by camels. (b) Chemical composition of camels diet.
Table 2. Dry matter intake and faeces collected per day

<table>
<thead>
<tr>
<th>Body weight (kg)</th>
<th>458 ± 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grazing time (min)</td>
<td>404 ± 49</td>
</tr>
<tr>
<td>Ingestion rate (g DM h⁻¹)</td>
<td>652 ± 149</td>
</tr>
</tbody>
</table>

Dry matter intake

| Total kg | 4.39 ± 0.54 |
| kg per 100 kg BW | 0.97 ± 0.19 |

Faeces collected

| Weight (kg) | 6.4 ± 1.3 |
| % DM | 43.3 ± 3.2 |

Total intake is calculated as the product of the rate of ingestion (g DM per h) and the grazing time. On pasture, dromedaries consume about 1 kg DM per 100 kg BW (Table 2) and they eject about 6.4 ± 1.3 kg of faeces with 56.7% humidity.

Apparent digestibilities of DM, OM, CP, CF, ADF and ADL are given by Table 3. The values of DM digestibility are comparable to those reported by Gauthier-Pilters (1977).

Table 3. Apparent digestibility

<table>
<thead>
<tr>
<th>Camel no.</th>
<th>8801</th>
<th>8802</th>
<th>8803</th>
<th>8901</th>
<th>8902</th>
<th>8906</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>d (DM)%</td>
<td>51.9</td>
<td>22.7</td>
<td>16.8</td>
<td>39.1</td>
<td>37.1</td>
<td>52.7</td>
<td>36.7 ± 13.5</td>
</tr>
<tr>
<td>d (Protein)%</td>
<td>34.8</td>
<td>-0.9</td>
<td>-5.4</td>
<td>15.4</td>
<td>08.1</td>
<td>36.9</td>
<td>14.8 ± 16.3</td>
</tr>
<tr>
<td>d (Fibre)%</td>
<td>49.0</td>
<td>28.4</td>
<td>19.6</td>
<td>38.7</td>
<td>39.2</td>
<td>54.3</td>
<td>38.2 ± 11.7</td>
</tr>
<tr>
<td>d (OM)%</td>
<td>55.5</td>
<td>27.8</td>
<td>23.3</td>
<td>44.2</td>
<td>41.5</td>
<td>55.8</td>
<td>41.3 ± 12.5</td>
</tr>
<tr>
<td>d (ADF)%</td>
<td>39.3</td>
<td>03.1</td>
<td>-1.1</td>
<td>23.6</td>
<td>21.9</td>
<td>43.6</td>
<td>21.8 ± 16.6</td>
</tr>
<tr>
<td>d (ADL)%</td>
<td>-24.1</td>
<td>-49.9</td>
<td>-63.1</td>
<td>-24.3</td>
<td>-32.9</td>
<td>05.1</td>
<td>-31.5 ± 21.5</td>
</tr>
</tbody>
</table>

Final conclusion

This study tried to answer conclusively questions about the diet selection, voluntary intake, nutritive value and digestibility of camel feed during the dry season (June-September), in order to estimate the camel's supplement requirements in this period.

This study provides preliminary information to facilitate the future off-station
investigations, preceded by on-station investigations which include "in vivo digestibilities". Finally, in order to respect the seasonal variations influence, measurements must be repeated during dry, intermediate and green seasons.

Acknowledgements

The work was supported by ESA Mateur, by the STD Program DG12 (TS2 0233-C) and by the UCEC-IEMVT.

We are grateful to Dr. H. Guerin (IEMVT France) and Dr. A. Chaabouni (ENMV Tunisie) for chemical analysis and scientific collaboration. We also thank Dr. G. Saint-Martin (UCEC-IEMVT France) and Dr D. Richard (IEMVT France) for scientific collaboration.

References

