In vitro gas production measurements and estimated energy value and microbial protein to investigate associative effects of untreated or biological treated linen straw and berseem hay

Nasser M.E.A., El Waziry A.M., Sallam S.M.A.

in

Zaragoza : CIHEAM / FAO / NAGREF
Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 85

2009
pages 261-266

Article available online / Article disponible en ligne à l'adresse :

http://om.ciheam.org/article.php?IDPDF=801015

To cite this article / Pour citer cet article

http://www.ciheam.org/
http://om.ciheam.org/
In vitro gas production measurements and estimated energy value and microbial protein to investigate associative effects of untreated or biological treated linen straw and berseem hay

M.E.A. Nasser, A.M. El-Waziry and S.M.A. Sallam
Animal Production Department, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria (Egypt)

Abstract. An in vitro gas production technique was used to investigate the associative effects of untreated or biologically-treated linen straw with berseem hay (H). The linen straw (LS) was biologically treated with white rot fungi (TLS). Ground samples (200 mg DM) of H, LS, TLS and the mixtures (50% w/w) of H + LS and H + TLS were incubated in 100 ml glass syringes with buffered rumen fluid. Cumulative gas production was recorded at 3, 6, 9, 12, 24, 48, 72 and 96 h of incubation and the kinetics of gas production was described by using the equation $\text{Gas (t)} = b \left[1 - \exp\left(-c(t-L)\right)\right]$. Gas production volume was highest for hay (P < 0.05) and greater for H + LS (P < 0.05) than LS and TLS. Total gas production at 96 h and rate of gas production increased when LS or TLS were mixed with hay. Metabolizable energy (ME) and net energy (NE) were higher (P < 0.01) for H, H + LS and H + TLS than for LS and TLS. Organic matter digestibility (OMD %) and microbial protein production were significantly higher for H, H + LS and H + TLS than for LS or TLS. In conclusion, positive associative effects on in vitro gas production occurred more consistently when untreated and biologically-treated linen straw was incubated in mixtures with hay.

Keywords. Gas production – Digestibility – Straw – Hay – Sheep.

I – Introduction

In tropical and sub-tropical developing countries, there is a gap between available and required animal feeds. Ruminants in these regions are often fed lignified forages and crop residues that are low in available energy and nitrogen. In these plants, a large proportion of structural carbohydrates is protected by lignin and thus not degraded by rumen bacteria (McSweeney et al., 1994; Sallam et al., 2007). In many ruminant production systems, cereal straws of low nutritive value are used as
forages during part of the annual seasonal cycle. There is growing interest in the use of feeds with a high content of rapidly degradable fiber as supplements to ruminants consuming poor quality forage diets. Manyuchi et al. (1996) found that supplementation of poor quality natural pasture (veld) hay with napier and peanut hays increased the intake of veld hay. In vitro gas production measurements confirmed such positive associative effects between napier or peanut hays and veld hay (Wood and Manyuchi, 1997), and between rice straw and hay or mulberry leaves (Liu et al., 2002). Also, Nasser et al. (2006) concluded that positive associative effects on in vitro gas production occurred more consistently when untreated rice straw or biologically-treated rice straw with white rot fungi or mushroom was incubated in mixtures with hay than incubated alone. Li et al. (1998) found that body weight gain of Chinese Gelbvieh cattle was higher when animals were fed ammoniated wheat straw and corn stover given in mixture (50:50, w/w) than given separately. The in vitro gas production technique has been proposed to estimate ruminal degradation of feeds (Menke and Steingass, 1988; Getachew et al., 1998), or digestible dry matter intake (DMI) and growth rate of cattle fed cereal straws (Blümmel et al., 1997a). The present study aimed at estimating in vitro gas production, energy value, organic matter digestibility and microbial protein production to investigate associative effects of untreated or biologically-treated linen straws with berseem hay.

II – Materials and methods

1. Feedstuffs and treatments

Berseem hay and untreated and biologically-treated linen straw were ground to pass a 1 mm sieve prior to chemical analyses and in vitro gas production measurements. The biological treatment with white rot fungi was performed according to Bassuny et al. (2003). Representative samples of untreated and biologically-treated linen straws and berseem hay were used for dry matter (DM), organic matter (OM), ether extract (EE), crude fiber (CF) and ash determination following the procedure of AOAC (1990). Nitrogen (N) content was measured by the Kjeldahl method (AOAC, 1990). Crude protein (CP) was calculated as N × 6.25. The neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose and hemicelluloses were determined according to van Soest et al. (1991).

2. In vitro gas production, estimation of energy value, organic matter digestibility and microbial protein

The in vitro gas test method was performed according to Menke and Steingass (1988). Rumen content was collected before morning feeding from three ruminally fistulated sheep fed berseem hay and commercial concentrate mixture twice a day. The rumen content was filtered through four layers of cheese-cloth and flushed with CO₂. The CO₂-flushed rumen fluid was added (1:2, v/v) to a buffered mineral solution (Onodera and Henderson, 1980), maintained in a water bath at 39°C. All laboratory handling of rumen fluid was carried out under a continuous flow of CO₂. The gas production was recorded at 3, 6, 9, 12, 24, 48, 72 and 96 hours of incubation. Total gas values were corrected for blank incubation which contains only rumen fluid. Cumulative gas production Gas (t) at time t was fitted to the modified exponential model described by Dhanoa (1988). The energy value and organic matter digestibility (OMD) of forages were calculated from the gas produced according to Menke et al. (1979). Microbial protein production was calculated as 19.3 g microbial nitrogen per kg OMD according to Czerkawski (1986).

3. Statistical analysis

Data were subjected to analysis of variance (ANOVA) using the General Linear Model (GLM). Significant differences between individual means were identified using least significance difference (LSD) multiple range test (SAS, 2000).
III – Results and discussion

1. Chemical composition

Chemical composition of hay, untreated and biologically-treated linen straw is presented in Table 1. Large differences in chemical composition were evidenced between of H, LS and TLS. CP content varied from 3.61% for LS to 15.32% for H. The CP content of H was higher than those of LS and TLS.

Table 1. Chemical composition of the investigated feedstuffs

<table>
<thead>
<tr>
<th>Items (%)</th>
<th>Hay (H)</th>
<th>Untreated linen straw (LS)</th>
<th>Treated linen straw (TLS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic matter (% DM)</td>
<td>88.8</td>
<td>74.1</td>
<td>67.2</td>
</tr>
<tr>
<td>Crude protein (% DM)</td>
<td>15.3</td>
<td>3.6</td>
<td>9.3</td>
</tr>
<tr>
<td>Ether extract (% DM)</td>
<td>1.0</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Ash (% DM)</td>
<td>11.20</td>
<td>25.95</td>
<td>32.79</td>
</tr>
<tr>
<td>Crude fiber (% DM)</td>
<td>29.8</td>
<td>54.3</td>
<td>23.2</td>
</tr>
<tr>
<td>NDF (% OM)</td>
<td>54.9</td>
<td>84.6</td>
<td>81.7</td>
</tr>
<tr>
<td>ADF (% OM)</td>
<td>38.3</td>
<td>71.1</td>
<td>66.0</td>
</tr>
<tr>
<td>ADL (% OM)</td>
<td>12.3</td>
<td>26.0</td>
<td>25.1</td>
</tr>
</tbody>
</table>

The treatment by fungi increased CP content of TLS compared to that of LS. It is well known that CP of forages is highly influenced by the biological treatments (Neijat and Gallagher, 1997; Nasser et al., 2006) and the chemical treatments (Liu et al., 2002). The OM content was lower for TLS than for H and LS. The NDF, ADF and cellulose content of feedstuffs ranged from 54.92 to 84.58, 38.31 to 71.14 and 26.04 to 45.14% OM, respectively. There was a reduction in the NDF, ADF, and cellulose content of the treated straw. These results are in agreement with findings of Neijat and Gallagher (1997) and Nasser et al. (2006). Ash content varied from 11.2% for H to 32.79% for TLS.

2. Gas production and estimated parameters

Data on gas production are given in Table 2. The cumulative volume of gas increased with increasing time of incubation (Fig. 1). Significant differences in gas production were evidenced between substrates for all the incubation times. Thus, gas productions were higher (P < 0.01) with H than with untreated and TLS. Total gas produced at 96 h of incubation (Fig. 1; Table 2) was highest for H (P < 0.01) and greater for H + LS and H + TLS (P < 0.05) than LS and TLS. When LS and TLS were mixed with hay, the total gas production and the rate of gas production increased, which are consistent with the results reported by Liu et al. (2002) and Nasser et al. (2006). Liu et al. (2002) showed that positive associative effects on in vitro gas production occurred more consistently when rice straw was incubated in mixtures with hay or mulberry leaves than when incubated in mixtures with chemically treated rice straw. Wood and Manyuchi (1997) observed statistically significant positive associative effects of veld hay and napier hay or peanut hay fermented in both N-rich and N-free media as assessed by gas production and DM disappearance.

The gas production from the insoluble fraction (b) was highest for H (P < 0.01) and greater for H + LS and H + TLS (P < 0.05) than LS and TLS. The gas production rate (c) of LS and TLS was significantly lower (P < 0.05) than those of H, H + LS and H + TLS. An increase in NDF and ADF resulted in the low gas production rate (c) of LS and TLS. This result is in agreement with findings of Kamalak (2006). Ndlovu and Nherera (1997) found that gas production rate (c) was negatively
correlated with NDF and ADF. On the other hand, gas production and estimated parameters (c, a, b and a + b) were positively correlated with CP which is one of the limiting factors for microbial growth (Larbi et al., 1998; Kamalak, 2006).

Table 2. Cumulative gas production at different times of incubation and gas production parameters for individual feedstuffs and mixtures of untreated and treated linen straw with hay

<table>
<thead>
<tr>
<th>Feedstuffs</th>
<th>Cumulative gas (ml) produced at</th>
<th>Parameters of gas production†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 h</td>
<td>24 h</td>
</tr>
<tr>
<td>H</td>
<td>26.73b</td>
<td>35.69b</td>
</tr>
<tr>
<td>LS</td>
<td>6.99a</td>
<td>10.01a</td>
</tr>
<tr>
<td>TLS</td>
<td>4.16a</td>
<td>8.32a</td>
</tr>
<tr>
<td>H+ LS</td>
<td>19.61b</td>
<td>28.14b</td>
</tr>
<tr>
<td>H + TLS</td>
<td>20.40b</td>
<td>26.06b</td>
</tr>
</tbody>
</table>

†b: theoretical maximum of gas production; c: gas production rate; L: lag time. Means within the same column with differing superscripts are significantly different.

Fig. 1. Gas production profile for treated and untreated linen straw and their mixture with berseem hay (1:1) incubated in vitro for 96 h.

3. Energy contents and organic matter digestibility

The predicted metabolizable energy (ME, MJ/kg DM), net energy (NE, MJ/kg DM), OMD and microbial protein (mg/kg DM) for individual feedstuffs and the different mixtures of untreated or biologically- treated linen straw with hay are presented in Table 3. Our data indicates that the ME and NE were highest (P < 0.01) for H and greater for H + LS and H + TLS (P < 0.05) than for LS and TLS. This result is in agreement with findings of Kamalak (2006). ME was positively correlated with CP protein which is one of the limiting factors for microbial growth (Larbi et al., 1998).

The OMD and microbial protein were higher (P < 0.01) for H, H + LS and H + TLS than for LS and TLS (Table 3). A close correlation exists between in vitro gas production and digestibility; the best correlation is achieved when the equation includes CP, crude fat and ash content (Menke and Steingass, 1988). In vitro gas production and in vitro apparent and true digestibility are highly
correlated (Blümmel et al., 1997b). Gas production is an indirect measure of substrate degradation and is a good predictor for the production of volatile fatty acids, but it is not always positively related to microbial mass production. Blümmel et al. (1997b) suggested that there is an inverse relationship between in vitro gas production and microbial biomass yield.

Table 3. Predictions of metabolizable energy (ME), net energy (NE), organic matter digestibility (OMD) and microbial protein synthesis prediction for individual feedstuffs and different mixtures of untreated and treated linen straw with hay

<table>
<thead>
<tr>
<th>Items</th>
<th>ME (MJ/kg DM)</th>
<th>NE (MJ/kg DM)</th>
<th>OMD (%)</th>
<th>Microbial protein (g/kg DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hay</td>
<td>7.94<sup>c</sup></td>
<td>5.20<sup>c</sup></td>
<td>54.34<sup>c</sup></td>
<td>65.55<sup>c</sup></td>
</tr>
<tr>
<td>LS</td>
<td>3.78<sup>a</sup></td>
<td>2.56<sup>a</sup></td>
<td>27.09<sup>a</sup></td>
<td>32.68<sup>a</sup></td>
</tr>
<tr>
<td>TLS</td>
<td>3.86<sup>a</sup></td>
<td>2.52<sup>a</sup></td>
<td>28.59<sup>a</sup></td>
<td>34.49<sup>a</sup></td>
</tr>
<tr>
<td>H + LS</td>
<td>6.57<sup>b</sup></td>
<td>4.34<sup>b</sup></td>
<td>45.37<sup>b</sup></td>
<td>54.37<sup>b</sup></td>
</tr>
<tr>
<td>H + TLS</td>
<td>6.45<sup>b</sup></td>
<td>4.20<sup>b</sup></td>
<td>45.02<sup>b</sup></td>
<td>54.31<sup>b</sup></td>
</tr>
</tbody>
</table>

^{a,b,c}Means, within columns, with different superscript are significantly differ (P < 0.05).

IV – Conclusions

There are positive associative effects on in vitro gas production, which occurred more consistently when untreated and biological treated linen straw was incubated in mixtures with hay. We can improve the degradation of linen straw by mixing with high quality roughage as berseem hay without the need for biological treatments.

References

Liu J.X., Susenbeth A. and Sudekum K.H., 2002. In vitro gas production measurements to evaluate...

