Rootstock trial of eight GxN interespecific hybrids in almond

Bielsa B., Rubio-Cabetas J.M., Felipe A.J., Gómez-Aparisi J., Socias i Company R.

in


Zaragoza : CIHEAM
Options Méditerranéennes : Séries A. Séminaires Méditerranéens; n. 119
2016
pages 183-186

Article available online / Article disponible en ligne à l'adresse :
http://om.ciheam.org/article.php?IDPDF=00007388

To cite this article / Pour citer cet article

Abstract. Almond growing is increasingly extending to areas where the species is not truly suited to, despite favourable climate. The most common problems in many Mediterranean countries include replanting, limestone chlorosis, and soilborne pests and diseases such as *Meloidogyne* root-knot nematodes and *Armillaria mellea* root-knot. Several almond x peach hybrids have shown good performance as rootstocks for different stone fruit species, including almond. The first commercially known hybrid was ‘GF-677’ and it is still used worldwide and demanded at present for almond growing. Eight almond x peach hybrids from the CITA breeding programme were evaluated in a rootstock trial located at CITA. They were grafted with the almond selection ‘B-2-5’ in 1994 and planted in 1995 at a distance of 5 x, using ‘GF-’ and ‘Nemared’ as controls. The trunk cross sectional area (TCSA) and productivity were evaluated. The results showed a differential performance for production and vigour between the ‘GF-’ and ‘Nemared’ as compared to the GxN series. Some differences were also observed for vigour among the three already commercially propagated ‘Garnem’ ‘Felinem’ and ‘Monegro’.

Keywords. Agronomic behaviour – Breeding – *Prunus amygdalus* – Vigour – Production.

I – Introduction

Almond (*Prunus amygdalus* Batsch; syn. *P. dulcis* (Mill.) D.A. Webb] is the most important tree nut crop in terms of production in the Mediterranean countries (FAOSTAT, 2015). This crop, although well adapted to the Mediterranean climate, is sometimes limited by many soil-related problems: replanting, limestone chlorosis, and soilborne pests and diseases such as *Meloidogyne* root-knot nematodes and *Armillaria mellea* root rot, which are common in this region. For these reasons, traditional rootstocks should be replaced by new ones in order to provide a good adaptation to each soil condition, thus ensuring a commercial production. Peach x almond hybrid rootstocks have been
widely utilized in during the last decades. Among the interspecific hybrids, the mostly used is ‘GF–
due to its good adaptation to calcareous soils. However, this hybrid is sensitive to root knot ne-
motodes (RKN). Other interspecific hybrids from the CITA breeding program are already com-
mercially propagated, such as Felinem’, ‘Garnem’ and ‘Monegro’, from the ‘Garfi’ x ‘Nemared’ cross,
aimed to introduce RKN resistance from ‘Nemared’. These interspecific hybrids were characterized
by a good adaptability to poor soils and easy propagation by hardwood cuttings and in vitro (Fe-
lipe, 2009). These three hybrids are red-leafed and have shown a better performance in peach re-
planting conditions than ‘GF- (Gomez-Aparisi et al., 2000). Thus, in order to evaluate the agronomic
performance of other genotypes of the GxN hybrids with almond, we studied eight different root-
stocks grafted with an almond selection in a trial at CITA, during ten years.

II – Materials and methods

The experiment was carried out in a plot located at CITA. Six almond x peach hybrids (‘GN1’, ‘GN2’,
‘GN14’, ‘Garnem’, ‘Felinem’ and ‘Monegro’ from the CITA breeding program) were grafted with the
almond selection ‘B-5- in 1994 and planted in 1995 at a planting distance of 5x5m, and evaluated
from 1998 to 2006. ‘GF- and ‘Nemared’ rootstocks were used as controls.

The experimental design was a randomized complete block with 9 to 7 single tree replications for
each rootstock.

The data collected yearly per tree were trunk diameter growth measured above the graft union (cm)
and production per tree (kg/tree). Trunk cross sectional area, TSCA (cm²), was also calculated.

The data were subjected to a one-way analysis of variance (ANOVA) with SPSS software. The
means were separated using ‘s post-hoc test (p ≤ 0.05).

III – Results and discussion

The vegetative growth expressed as TSCA showed that the GxN hybrids had a significantly
higher vigour than ‘GF- and ‘Nemared’ (Fig. 1). All of them induced a positive lineal growth along
the years (Fig. 1). Comparing the TCSA values among the GxN series, there were no differences
until 2005, when ‘GN- showed the highest area, followed by ‘GN-, ‘Garnem’ and ‘Monegro’. In 2006,
‘GN- maintained the highest vigour in comparison to the others, followed by ‘Garnem’.

During 2000, 2002 and 2005, significant differences were observed in production among all root-
stocks. In 2003, production was low due to spring temperatures and in 2004 all genotypes were
chilling injured (Fig. 2). When the production of ‘GF- and ‘Nemared’ were compared to the GxN hy-
broids, no significant differences were observed, except for ‘GN- which showed the highest pro-
duction in 2005, however, this hybrid showed the lowest production, despite its vigorous vegeta-
tive growth during that year (Fig. 1). ‘Garnem’, ‘Felinem’ and ‘Monegro’ showed similar values
among them, but higher than ‘Nemared’ along the years (Fig. 2). The general trend followed by the
GxN clones from 2002 to 2006 demonstrates these three hybrids are a good choice for re-plant-
ing instead ‘GF-677’ due to their high vigour and root knot nematodes resistance for Mediterranean
conditions as well as the high productive efficiency of these genotypes.
Fig. 1. Trunk cross-sectional area (TCSA) of almond selection ‘B-5-2’ grafted onto eight rootstocks along the years. Same letter values indicate a no significant difference (p ≤ 0.05) following Duncan’s post hoc test. Error bars means the standard error from the mean.

Fig. 2. Production per tree (kg/tree) of almond selection ‘B-5-2’ grafted onto eight rootstocks along the years. Same letter values and years without letter indicate a no significant difference (p ≤ 0.05) following Duncan’s post hoc test. Error bars means the standard error from the mean.
Acknowledgments

This work was supported by several projects from INIA and CICYT from 1990 to 2005 and the research group A-12 of Aragón.

References

