Economic versus non-economic motives of transhumant farmers in Greece

Ragkos A., Mitsopoulos I., Kiritsi S., Piteris C., Lymberopoulos A., Palla E., Bampidis V., Lagka V.

in

The value chains of Mediterranean sheep and goat products. Organisation of the industry, marketing strategies, feeding and production systems

Zaragoza : CIHEAM
Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 115

2016
pages 503-507

Article available on line / Article disponible en ligne à l’adresse :
http://om.ciheam.org/article.php?IDPDF=00007323

To cite this article / Pour citer cet article

Ragkos A., Mitsopoulos I., Kiritsi S., Piteris C., Lymberopoulos A., Palla E., Bampidis V., Lagka V.

http://www.ciheam.org/
http://om.ciheam.org/
Abstract. Transhumance in Greece constitutes a paradigm of a multifunctional system, affecting the environment and the viability of mountainous areas, while its continuation is linked to the cultural identity of these areas, including the maintenance of the transhumant farmer profession itself. This study proposes a conceptual framework to approach the multifunctional character of transhumance. Through a questionnaire survey, a latent construct measuring the degree to which transhumant farmers are motivated by their multiple roles in their decision-making process was proposed. In order to examine the validity of this latent construct, a confirmatory factor analysis was employed, revealing that farmers incorporate economic and non-economic features within the same framework, thus understanding that they play distinct roles, all of which comprise the multifunctional character of their profession. Not surprisingly, economic features are negatively correlated with non-economic ones, providing an explanation as to why transhumance has demonstrated resilience under harsh economic conditions. The results can be used in the implementation of Reg. EC/1305/2013, as they highlight that funds for transhumance should not be of purely economic nature, but should also be allocated to sectors affected by the multifunctional character of the system.

Keywords. Extensive livestock farming – Environment – Rural development – Confirmatory factor analysis.

I – Introduction

In Greece, sheep and goat transhumant farms play numerous roles, as almost all types of family farms in the EU (de Vries, 2000). When it comes to the economic performance of transhumance, the low requirements of the system in fixed capital, purchased feedstuff and hired labor (Ragkos
et al., 2014) demonstrate that it is cost-efficient. However, its resilience through time, even under difficult conditions, implies that there are also non-economic factors affecting the decision to remain in the system. Such factors can be integrated and examined within the framework of multifunctional farming, as proposed by the OECD (2001). This approach implies that agricultural and livestock production systems produce non-traded outputs categorized as those affecting the environment and rural amenities (Lankonski and Ollikainen, 2003). Indeed, the performance of seasonal movements has generated a particular way of life and a broad range of customs followed by transhumant farmers, which shape the “agricultural cultural heritage” of the system (Sivignon, 1975). Transhumance has been—and still is—the main economic activity for many Greek mountainous areas (Ispikoudis et al., 2002), being the basis for a development process “from the inside” which takes advantage of existing know-how, infrastructure and natural resources. The system also plays a two-fold environmental role through the protection of genetic diversity, by rearing sheep and goats of rare autochthonous breeds, and through the development of mountainous rangelands.

The new Common Agricultural Policy of the EU (Reg. EC/1305/2013 and Reg. Ec/1307/2013), provides income support and financial opportunities to extensive livestock farmers. In order to achieve the best allocation of funds it is important to discern the motivation behind these farmers’ decisions to remain in the transhumant system. In other words, it is accepted that transhumance is multifunctional, but are farmers aware of their multiple roles and do these roles affect their decisions? In order to answer this question, this study proposes a latent construct which comprises economic and non-economic implications of transhumance, measuring how farmers are motivated by their multifunctional role in their decision-making process.

II – Materials and methods

The empirical analysis is based on a questionnaire survey of 551 transhumant livestock farmers. Participants were interviewed concerning the degree to which they acknowledge the multiple roles that they are supposed to play. Using a 5-point Likert scale (Totally agree, Agree, Neither agree nor disagree, Disagree, Totally disagree), respondents were presented with four latent constructs, each one including 6 to 7 item describing dimensions of the multifunctionality of transhumance (Table 1). The survey was conducted from 2012-2014. The initial processing of the data excluded 23 cases, yielding a valid dataset of 527 responses.

A Confirmatory Factor Analysis (CFA) (Brown, 2006) was employed in order to examine the validity and reliability of the latent construct, that is to demonstrate that the four latent variables describe the same notion—the multifunctionality of transhumance—in a consistent manner and that they can all be included within a common framework of examination of the system. Numerous specifications of the latent construct were tested and some items were removed in order to improve the goodness-of-fit measures. The most commonly used goodness-of-fit measures are the root mean square of approximation (RMSEA), the standardized root mean square residual (SRMR), the comparative fit index (CFI), the goodness-of-fit index (GFI) and the adjusted goodness-of-fit index (AGFI) (Hu and Bentler, 1999, Ardoin et al., 2012). The final specification of the latent construct is illustrated in Fig. 1.
The results of the CFA are reported in Table 2. According to values reported by Hu and Bentler (1999) all goodness-of-fit measures were satisfactory and modification indices were all reasonable, indicating the robustness of the latent construct. Latent variables referring to non-economic functions (RD, ENV, PR) explained more of the variance (49.2%, 40.8% and 36.9% respectively) than EP (21.0%). Positive correlations were estimated among RD, ENV and PR (Table 2) but, not surprisingly, EP was negatively correlated with all of them. Indeed, this implies that there are two types of motivations for transhumant farmers—economic benefits for themselves and the provision of benefits for society—which are considered as “rival”: a high interest for EP would entail less care for non-traded outputs, while preferences in favor of the provision of other goods and services could favor their production despite any potential economic drawbacks. This explains the resilience of the system, as it has kept on operating through harsh economic conditions, including the low opportunity costs of labor and historic and social isolation of areas where transhumance is practiced.
Fig. 1. Theoretical latent construct – Tree diagram describing the multifunctionality of transhumance.

Table 2. Results of the CFA – Factor loadings, variance accounted for and goodness-of-fit

<table>
<thead>
<tr>
<th>Factor</th>
<th>Items</th>
<th>Unstandardized coefficients (factor loadings)</th>
<th>Standard error</th>
<th>Estimate/ st. err.</th>
<th>Variance explained (%)</th>
<th>Variance explained by factor (%)</th>
<th>Correlations between latent variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic performance (EP)</td>
<td>Ec1</td>
<td>1.53</td>
<td>0.39</td>
<td>3.87</td>
<td>19.6</td>
<td>21.0</td>
<td>RD -0.078</td>
</tr>
<tr>
<td></td>
<td>Ec2</td>
<td>1.81</td>
<td>0.48</td>
<td>3.73</td>
<td>26.7</td>
<td>16.8</td>
<td>ENV -0.138</td>
</tr>
<tr>
<td></td>
<td>Ec4</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PR -0.088</td>
</tr>
<tr>
<td>Rural development (RD)</td>
<td>RD1</td>
<td>0.96</td>
<td>0.07</td>
<td>13.06</td>
<td>53.1</td>
<td>49.2</td>
<td>ENV 0.704</td>
</tr>
<tr>
<td></td>
<td>RD4</td>
<td>0.98</td>
<td>0.07</td>
<td>13.40</td>
<td>58.5</td>
<td>58.5</td>
<td>PR 0.625</td>
</tr>
<tr>
<td></td>
<td>RD5</td>
<td>0.78</td>
<td>0.07</td>
<td>12.00</td>
<td>37.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RD6</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td>Environmental protection (ENV)</td>
<td>En1</td>
<td>1.32</td>
<td>0.11</td>
<td>11.89</td>
<td>67.7</td>
<td>40.8</td>
<td>PR 0.753</td>
</tr>
<tr>
<td></td>
<td>En5</td>
<td>0.64</td>
<td>0.08</td>
<td>7.73</td>
<td>15.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En6</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>The profession (PR)</td>
<td>Pr1</td>
<td>1.62</td>
<td>0.20</td>
<td>7.84</td>
<td>37.1</td>
<td>36.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pr3</td>
<td>1.67</td>
<td>0.22</td>
<td>7.58</td>
<td>42.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pr5</td>
<td>1.80</td>
<td>0.22</td>
<td>8.26</td>
<td>50.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pr6</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>17.2</td>
<td></td>
</tr>
</tbody>
</table>

Chi-square = 222.71
Chi-square/df (Cmin/df) = 3.137
RMSEA = 0.064
df = 71
GFI = 0.942
SRMR = 0.051
p = 0.000
AGFI = 0.914
CFI = 0.914
IV – Conclusions

The latent construct described in this paper can be of use in the implementation of Reg. EC/1305/2013 and in the design of targeted measures supporting transhumance, as it encompasses all the factors which motivate transhumant farmers in their decision-making process. It is highlighted that funds for transhumance should not only be granted through purely economic incentives at the farm level (income support, financing of farm investments), but should also be allocated to actions supporting the multifunctional character of the system, for instance measures for rangeland management, the protection of the livelihood of mountainous villages, the promotion of the cultural heritage of transhumance and the development of the overall image of transhumant farmers, which would enable them to increase their self-esteem. However, the low variance explained by factor EP implies that this factor should be tested in the future and that there are potentially many more factors formulating the opinions of transhumant farmers concerning the economic performance of their activity.

Acknowledgements

This paper is part of the project “The dynamics of the transhumant sheep and goat farming system in Greece. Influences on biodiversity” which is co-funded by the European Union (European Social Fund) through the Action “THALIS”.

References