Pyramiding resistance genes to Fusarium head blight and rusts from Thinopyrum ponticum into durum wheat

Forte P., Kuzmanović L., Virili M. E., Gennaro A., Bitti A., Ceoloni C.

in

2014
pages 457-462

To cite this article / Pour citer cet article

Pyramiding resistance genes to Fusarium head blight and rusts from Thinopyrum ponticum into durum wheat

Paola Forte, Ljiljana Kuzmanović, Maria Elena Virili, Andrea Gennaro, Alessandra Bitti, Carla Ceoloni
Dept. of Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy

Abstract. Taking advantage of climate changes, unfamiliar pests and diseases are challenging wheat crop species. This is the case for Fusarium Head Blight (FHB), which has recently become a threat in unusual environments, including those where durum wheat is traditionally cultivated. Since currently available durum wheats are largely susceptible to FHB, new varieties are needed capable of maintaining yield capacity and grain quality under the disease pressure. A sustainable approach to achieve this aim is represented by transfer of resistance genes/QTL from related Triticeae species by means of “chromosome engineering”. We resorted to this cytogenetic strategy, efficiently complemented with advanced characterization and selection systems, to transfer into durum a gene/QTL for FHB resistance (provisional designation Fhb-7el2) located on the 7el2L arm of the wild Thinopyrum ponticum. A bread wheat 7DS.7el2L translocation line was employed as donor of the trait in crosses with previously developed durum wheat 7AS.7AL-7el1L recombinant genotypes, carrying additional resistance genes (Lr19+Sr25) deriving from a different Th. ponticum accession. Given the nearly complete homology between the 7el1L and 7el2L arms, and in spite of some pairing reduction in the pentaploid F1’s, pyramiding into durum of target genes/QTL from the two Th. ponticum accessions was successfully achieved. The selected multiple recombinant lines exhibited up to 80% reduction of susceptibility following Fusarium inoculation. The present proof of the Fhb-7el2 efficacy also in durum wheat opens the way for its straightforward breeding exploitation.

Pyramidage des gènes de résistance à la fusariose de l’épi et à la rouille de Thinopyrum ponticum dans le blé dur

Résumé. A la suite des changements climatiques, des ravageurs et des maladies auparavant inconnus chez le blé ont fait leur apparition sur cette culture. Tel est le cas de la fusariose de l’épi (FHB), qui représente une nouvelle menace pour certains environnements, y compris ceux où le blé dur est traditionnellement cultivé. Puisque les blés durs disponibles aujourd’hui sont très sensibles à la FHB, il est nécessaire d’obtenir de nouvelles variétés capables de maintenir le potentiel de rendement et la qualité du grain sous pression de maladie. Une approche durable pour atteindre cet objectif est le transfert de gènes de résistance/QTL à partir d’espèces apparentées à Triticeae par le biais de « l’ingénierie chromosomique ». Nous avons eu recours à cette stratégie cytogénétique, complétée efficacement par des systèmes de caractérisation et de sélection avancés, pour transférer chez le blé dur un gène/QTL pour la résistance à la FHB (désignation provisoire Fhb-7el2), situé sur le bras 7el2L de l’espèce sauvage Thinopyrum ponticum. Une lignée de translocation de blé tendre 7DS.7el2L a été utilisée comme donneur de ce caractère dans les croisements avec les génotypes recombinants de blé dur 7AS.7AL-7el1L développés précédemment, portant des gènes de résistance supplémentaires (Lr19 + SR25) issus d’une accession différente de T. ponticum. Compte tenu de l’homologie presque complète entre les bras 7el1L et 7el2L, et malgré une certaine réduction d’appariement dans les pentaploïdes F1, le pyramidage dans le blé dur des gènes cibles/QTL des deux accessions de Th. ponticum a été réalisé avec succès. Les lignées recombinantes multiples sélectionnées affichaient jusqu’à 80% de réduction de la vulnérabilité après l’inoculation de Fusarium. Cette preuve de l’efficacité du Fhb-7el2 aussi chez le blé dur ouvre la voie à son exploitation directe dans la sélection.

I – Introduction

In recent years, climatic changes have favoured the spread of previously uncommon fungal diseases, including Fusarium Head Blight (FHB), in several wheat growing areas, resulting in damage to wheat production and quality (Chakraborty and Newton, 2011). An efficient and sustainable strategy to counter the spread of the pathogen is development of resistant/tolerant varieties able to respond to the current and future demand for high-yielding and low-impact crops. Given the scarcity of resistance sources in cultivated *Triticum* species and even among their close relatives (Buerstmayr et al., 2009, 2012, 2013), we have looked outside the primary gene pool and targeted perennial wheatgrass species belonging to the *Thinopyrum* genus. *Thinopyrum* possesses a considerable array of genes for disease and pest resistance as well as for tolerance to environmental stresses, and even yield-related traits (Kuzmanović et al., 2013), some of which have been exploited in wheat breeding (reviewed in Ceoloni et al., 2013). *Thinopyrum* species are also valuable donors of effective resistance to FHB (Cai et al., 2005). Both the diploid *Th. elongatum* (2n = 14) and the decaploid *Th. ponticum* (2n = 70) were shown to harbour a major gene/QTL for FHB resistance on the long arm of a homoeologous group 7 chromosome, namely on 7EL and on 7elL respectively. While the 7elL gene/QTL has been mapped toward the distal end of the arm in close association with XBE445653 and Xcfa2240 marker loci (Shen and Ohm, 2007; Zhang et al., 2011), position of the 7EL locus(i) along the arm has not been determined so far (Shen et al., 2004; Shen and Ohm, 2006). The 7elL arm also carries the effective, but still unmapped, stem rust resistance gene *Sr43* (Kibirige-Sebunya and Knott, 1983; Xu et al., 2009), whereas it lacks any major leaf rust resistance gene (Kim et al., 1993).

On the other hand, on the 7elL arm (Sharma and Knott, 1966; Dvorak and Knott, 1977), also called 7AgL (Sears, 1973), originating from a different *Th. ponticum* accession, the leaf and stem rust resistance genes *Lr19* and *Sr25* are distally located (Ceoloni et al., 2005, 2013; Gennaro et al., 2009), in close linkage with a *Yp* gene contributing to yellow endosperm pigmentation (similarly present on 7elL, see Kibirige-Sebunya and Knott, 1983). Both *Lr19* and *Sr25* are highly valuable resistance sources effective against a large majority of races of the corresponding fungal pathogen that has spread worldwide (Singh et al., 2008; Gennaro et al., 2009; Jain et al., 2009). Notably, they display their full efficacy in areas where durum wheat is the main cereal crop (such as central Italy) and rust diseases represent a constant challenge (leaf rust e.g., Gennaro et al., 2007) or tend to re-emerge (stem rust, see Nocente et al., 2011).

As 7elL proved to be fully homologous to 7elL (Forte et al., 2011; Zhang et al., 2011) and closely homoeologous to 7EL (Dvorak, 1975; Forte et al., 2011), pyramiding of the different *Thinopyrum* genes was considered a feasible target. Chromosome engineering strategies have been undertaken for the recombination-based pyramiding of resistance genes/QTL from both of the above-mentioned *Thinopyrum* species into bread and durum wheat recombinant lines. While the work involving the *Th. elongatum*-derived FHB resistance is underway, we present here the results of successful pyramiding of FHB resistance from *Th. ponticum* 7elL chromosome into durum wheat lines already carrying the 7elL-derived *Lr19* and *Sr25* rust resistance genes.

II – Material and methods

The KS24 bread wheat 7DS.7elL centric translocation line (Kibirige-Sebunya and Knott, 1983; Shen and Ohm, 2007; Fig. 1) was used as FHB resistance donor (type II resistance, i.e., inhibition of disease spreading after infection) in crosses with durum wheat recombinant lines, named R5-2-10, R112-4 and R23-1 (Fig. 1). The latter genotypes have 23%, 28% and 40%, of 7elL replacing corresponding portions of their 7AL arms, respectively (Ceoloni et al., 2005). Meiotic metaphase I chromosomes of pentaploid F1 plants were subjected to Genomic In Situ Hybridization (GISH) to assess the frequency of 7elL/7elL pairing. F1’s were backcrossed to normal durum cultivars...
to recover the 2n = 28 chromosome number in the target genotypes. Selection for the desired loci was aided by use of polymorphic SSR, EST and STS markers in the regions of interest (Fig. 1; see also Ceoloni et al., 2013). Further characterization was carried out by GISH on somatic chromosomes of the selected genotypes. Selected plants carrying 7el_1 markers linked to the FHB resistance locus (here provisionally designated Fhb-7el_2) were subjected to infection with *Fusarium graminearum*. A pair of central spikelets of each ear (one ear/plant) was inoculated by spore injection, and the disease spreading followed at 7, 14 and 21 days post-inoculation (dpi). The KS24 line, previously proved to be highly resistant also toward Italian *Fusarium* pathotypes, was included in the infection test in addition to several susceptible controls including the 7AL-7el_1 recombinant lines R5-2-10 and R112-4, as well as various durum wheat cultivars.

III – Results and discussion

GISH analyses on meiotic metaphase I cells confirmed the considerable pairing affinity between the largely homologous chromosomes 7el_1 and 7el_2. However, in contrast to their virtually complete pairing observed in bread wheat F1’s from the cross of the KS24 line with the T4 translocation line (70% of 7DL replaced by 7el_1) (Shen and Ohm, 2007; Forte et al., 2011), 7el_1/7el_2 pairing in KS24 x R5-2-10/R112-4/R23-1 pentaploid F1’s, always detected in the form of a 7AL.7AS/7AS.7AL-7el_1L.7DS trivalent configuration, dropped to less than 40% frequency. This can probably be attributed to the fact that the homologous 7el_1 and 7el_2 portions lie on otherwise homoeologous chromosomes of the durum wheat parent (7A) and of the bread wheat parent (7D), the former having its complete 7A also present in the same cell.

In line with the observed pairing frequency, around 18% 7el_1-7el_2 recombinants were identified in the progeny from the cross of (KS24 x R5-2-10/R112-4/R23-1) F_1 plants x durum cv. Ariosto, analysed with suitable molecular markers (Fig. 1). GISH applied to somatic chromosomes of the putative recombinant types revealed that only a minority of them had the desired combination of 7el_1 and 7el_2 target loci on wheat 7AL arm, the remaining ones showing 7el_1L/7el_2L recombinant chromatin onto the 7DL arm. Of two 7AL recombinants, R85, like R23-1, has 40% of distal 7el_1L (Fig. 1), while R129, like R5-2-10, has 23% distal 7el_2L (Fig. 1). Molecular markers revealed that both R85 and R129 recombinants carry *Lr19* (7el_1L), as well as the 7el_2L allele for the most proximal XBE445653 and XBF145935 EST marker loci, besides that for the *Yp* gene-linked XSTSPsy1 locus (Fig. 1).

Based on selection by molecular markers homozygous plants, both carriers and non-carriers of the distal *Thinopyrum* segment, were isolated in F_2 progeny of R85 crossed with normal durum wheat, and these were subjected to infection with *Fusarium* ssp. to assess their resistance/susceptibility against Italian pathotypes. A pair of central spikelets of each ear (one ear/plant) was inoculated by spore injection and the disease spreading followed at 7, 14 and 21 days post-inoculation. As susceptible controls, plants of the R5-2-10 and R112-4 recombinant lines and durum wheat varieties Simeto and Duilio were also included in the experiment.

The phenotypic assay confirmed the tight association of the *Fhb-7el_2* QTL with the CFA2240 marker (the XBE445653 marker locus has a 7el_1 allele in R85), and for the first time it showed its efficacy, previously reported only in bread wheat (Shen and Ohm, 2007), to be fully displayed in durum wheat as well. In fact, the selected R85 homozygous plants showed a significant reduction of susceptibility to FHB, ranging between 60 and 80%.

In F_2 progeny of R85 recombinant heterozygous for a normal 7A, some deviation from normal transmission was observed, likely attributable to the known presence of a Segregation distortion (Sd) gene in its most proximal portion, i.e. comprised between its 7el_1L-7AL breakpoint (= R23-1)
and that of line R112-4 (see Fig. 1). In order to eliminate drawbacks associated with presence of the \textit{Sd} gene (Ceoloni \textit{et al.}, 2013), R85 was crossed with R112-4 and R5-2-10 recombinants. This allowed isolation of secondary recombinant types, named R193 and R216, with the same 7el\textsubscript{1}/7el\textsubscript{2} content of target loci as R85, but with overall shorter 7el\textsubscript{L} segments (Fig. 1), hence undergoing normal transmission (not shown). Homozygous plants of such recombinants, as well as of R129, are currently isolated and will be subjected to \textit{Fusarium} infection to corroborate previous evidence on R85. Resistance to leaf rust conferred by \textit{Lr19} was also validated in these materials, both in seedlings and adult plants, while presence of \textit{Sr25} remains to be ascertained.

In conclusion, the recombinant durum wheat genotypes identified in this work represent novel and highly valuable material to be introduced in durum wheat breeding programs aimed at enhancing and widening the spectrum of resistance to a variety of relevant diseases, both traditional and newly emerged that are greatly challenging the crop.

<table>
<thead>
<tr>
<th>7DS.7el\textsubscript{L}</th>
<th>7A5.7AL-7el\textsubscript{1},L</th>
<th>7A5.7AL-7el\textsubscript{1},L/7el\textsubscript{2},L</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2n = 42)</td>
<td>(2n = 28)</td>
<td>(2n = 28)</td>
</tr>
<tr>
<td>KS24</td>
<td>R23-1</td>
<td>Xbarc231</td>
</tr>
<tr>
<td></td>
<td>R112-4</td>
<td>Xbarc121</td>
</tr>
<tr>
<td></td>
<td>R5-2-10</td>
<td>Xpos129</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XAg15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XSTS\textit{Lr19}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XSTS\textit{Ps} \textit{Yp}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xbel445653</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xcfu2240, \textit{Fhb-7el\textsubscript{L}}</td>
</tr>
</tbody>
</table>

Figure 1. Pyramiding genes/QTL from \textit{Th. ponticum} 7el\textsubscript{L} and 7el\textsubscript{L} chromosome arms: parental lines and their durum wheat recombinant products carrying different amounts of total 7el\textsubscript{L} chromatin and combinations of target and marker loci.

Acknowledgments

Financial support from MIUR (Italian Ministry of Education, University and Research), grant PRIN (Progetti di Ricerca scientifica di rilevante Interesse Nazionale) 2010-11 on “Identification and characterization of yield- and sustainability-related genes in durum wheat” is gratefully acknowledged.

References

